Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 14(4)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38668335

ABSTRACT

Hot climate is one of the major factors affecting the dairy industry. Heat stress could be responsible for decreased feed intake and consequently leads to alterations in energy metabolism, particularly during late pregnancy and early lactation. This study aimed to assess the effects of summer heat on adipose tissue activities during the periparturient period in Simmental cows. Two groups of cows were involved: heat-stressed cows (n = 12) that calved from June to August and thermoneutral cows (n = 12) that calved from October to December. Blood samples were taken from each cow during the periparturient period: 21 and 7 days before calving and 8, 16, 24, 32, and 40 days after calving. Glucose, beta-hydroxy butyrate (BHB), non-esterified fatty acids (NEFA), leptin (LP), and adiponectin (ADP) were measured in serum samples by commercial kits. Thermoneutral cows expressed higher degrees of lipomobilization syndrome than heat-stressed cows, indicated by significantly higher serum NEFA and BHB concentrations in the early lactation. Leptin levels were significantly decreased, while adiponectin was increased in heat-stressed cows compared to thermoneutral ones. The results indicated that heat-stressed cows during the periparturient period mobilized less fat from adipose tissue to reduce the heat generation by fatty acid oxidation.

2.
J Environ Manage ; 352: 119985, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38184870

ABSTRACT

Flooding is expected to increase due to climate change, urbanisation, and land use change. To address this issue, Nature-Based Solutions (NBSs) are often adopted as innovative and sustainable flood risk management methods. Besides the flood risk reduction benefits, NBSs offer co-benefits for the environment and society. However, these co-benefits are rarely considered in flood risk management due to the inherent complexities of incorporating them into economic assessments. This research addresses this gap by developing a comprehensive methodology that integrates the monetary analysis of co-benefits with flood risk reduction in economic assessments. In doing so, it aspires to provide a more holistic view of the impact of NBS in flood risk management. The assessment employs a framework based on life-cycle cost-benefit analysis, offering a systematic and transparent assessment of both costs and benefits over time supported by key indicators like net present value and benefit cost ratio. The methodology has been applied to the Tamnava basin in Serbia, where significant flooding occurred in 2014 and 2020. The methodology offers valuable insights for practitioners, researchers, and planners seeking to assess the co-benefits of NBS and integrate them into economic assessments. The results show that when considering flood risk reduction alone, all considered measures have higher costs than the benefits derived from avoiding flood damage. However, when incorporating co-benefits, several NBS have a net positive economic impact, including afforestation/reforestation and retention ponds with cost-benefit ratios of 3.5 and 5.6 respectively. This suggests that incorporating co-benefits into economic assessments can significantly increase the overall economic efficiency and viability of NBS.


Subject(s)
Floods , Risk Management , Cost-Benefit Analysis , Urbanization , Climate Change
3.
J Proteomics ; 244: 104277, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34044168

ABSTRACT

Bovine mastitis causes changes in the milk and serum proteomes. Here changes in both proteomes caused by naturally occurring subclinical and clinical mastitis have been characterised and quantified. Milk and serum samples from healthy dairy cows (n = 10) were compared to those of cows with subclinical (n = 12) and clinical mastitis (n = 10) using tandem mass tag (TMT) proteomics. Proteins that significantly increased or decreased in milk (n = 237) or serum (n = 117) were quantified and classified by the type of change in subclinical and clinical mastitis. A group of the proteins (n = 38) showed changes in both milk and serum a number of which decreased in the serum but increased in milk, suggesting a particular role in host defence for maintaining and restoring homeostasis during the disease. Proteins affected by bovine mastitis included proteins in host defence and coagulation pathways. Investigation of the modified proteomes in milk and serum was assessed by assays for haptoglobin, serum amyloid A and α1 acid glycoprotein validating the results obtained by quantitative proteomics. Alteration of abundance patterns of milk and serum proteins, together with pathway analysis reveal multiple interactions related to proteins affected by mastitis. Data are available via ProteomeXchange with identifier PXD022595. SIGNIFICANCE: Mastitis is the most serious condition to affect dairy cows and leads to reduced animal welfare as well as having a negative economic effect for the dairy industry. Proteomics has previously identified changes in abundance of milk proteins during mastitis, but there have been few investigations addressing changes that may affect proteins in the blood during the infection. In this study, changes in the abundance of proteins of milk and serum, caused by naturally occurring mastitis have been characterised by proteomics using a quantitative approach and both subclinical and clinical cases of mastitis have been investigated. In both milk and serum, change in individual proteins was determined and classified into varying types of altering abundance, such as increasing in subclinical mastitis, but showing no further increase in clinical mastitis. Of special interest were the proteins that altered in abundance in both milk and serum which either showed similar trends - increasing or decreasing in both biological fluids or showed reciprocal change decreasing in serum but increasing in milk. As well as characterising proteins as potential markers of mastitis and the severity of the disease, these results provide insight into the pathophysiology of the host response to bovine mastitis.


Subject(s)
Mastitis, Bovine , Mastitis , Animals , Cattle , Female , Humans , Milk , Milk Proteins , Proteome
4.
Open Med (Wars) ; 13: 512-519, 2018.
Article in English | MEDLINE | ID: mdl-30426090

ABSTRACT

There are many determinants of vancomycin clearance, but these have not been analyzed separately in populations with different levels of renal function, which could be why some important factors have been missed. The aim of our study was to compare the pharmacokinetic parameters and factors that may affect vancomycin pharmacokinetics in groups of patients with normal renal function and in those with chronic kidney failure. The study used a population pharmacokinetic modeling approach, based on plasma vancomycin concentrations and other data from 78 patients with chronic kidney failure and 32 patients with normal renal function. The model was developed using NONMEM software and validated by bootstrapping. The final model for patients with impaired kidney function was described by the following equation: CL (L/h) = 0.284 + 0.000596 x DD + 0.00194 x AST, and that for the patients with normal kidney function by: CL (L/h) = 0.0727 + 0.205 x FIB. If our results are confirmed by new studies on two similar populations, these factors could be considered when dosing vancomycin in patients with chronically damaged kidneys, as well as in patients with normal kidneys who frequently require high doses of vancomycin.

SELECTION OF CITATIONS
SEARCH DETAIL
...